Leiame kõikide külgede pikkused:
A B ⃗ = B − A = ( 3 ; 1 ) − ( 2 ; − 4 ) = ( 1 ; 5 ) \vec{AB} = B - A = (3; 1) - (2; -4) = (1; 5) A B = B − A = ( 3 ; 1 ) − ( 2 ; − 4 ) = ( 1 ; 5 )
C = A + A C ⃗ = ( 2 ; − 4 ) + ( 6 ; − 2 ) = ( 8 ; − 6 ) C = A + \vec{AC} = (2; -4) + (6; -2) = (8; -6) C = A + A C = ( 2 ; − 4 ) + ( 6 ; − 2 ) = ( 8 ; − 6 )
B C ⃗ = C − B = ( 8 ; − 6 ) − ( 3 ; 1 ) = ( 5 ; − 7 ) \vec{BC} = C - B = (8; -6) - (3; 1) = (5; -7) BC = C − B = ( 8 ; − 6 ) − ( 3 ; 1 ) = ( 5 ; − 7 )
∣ A B ⃗ ∣ = 1 2 + 5 2 = 26 \vert{\vec{AB}}\vert = \sqrt{1^2 + 5^2} = \sqrt{26} ∣ A B ∣ = 1 2 + 5 2 = 26
∣ A C ⃗ ∣ = 6 2 + ( − 2 ) 2 = 40 \vert{\vec{AC}}\vert = \sqrt{6^2 + (-2)^2} = \sqrt{40} ∣ A C ∣ = 6 2 + ( − 2 ) 2 = 40
∣ B C ⃗ ∣ = 5 2 + ( − 7 ) 2 = 74 \vert{\vec{BC}}\vert = \sqrt{5^2 + (-7)^2} = \sqrt{74} ∣ BC ∣ = 5 2 + ( − 7 ) 2 = 74
Leiame kolmnurga pindala Heroni valemi abil:
S = p ( p − a ) ( p − b ) ( p − c ) S = \sqrt{p(p-a)(p-b)(p-c)} S = p ( p − a ) ( p − b ) ( p − c )
p = a + b + c 2 p = \frac{a + b + c}{2} p = 2 a + b + c
p = 26 + 40 + 74 2 p = \frac{\sqrt{26} + \sqrt{40} + \sqrt{74}}{2} p = 2 26 + 40 + 74
S = 16 S = 16 S = 16
Leiame siseringi pindala:
r = S p r = \frac{S}{p} r = p S
r = 16 26 + 40 + 74 2 r = \frac{16}{\frac{\sqrt{26} + \sqrt{40} + \sqrt{74}}{2}} r = 2 26 + 40 + 74 16
r = 32 26 + 40 + 74 r = \frac{32}{\sqrt{26} + \sqrt{40} + \sqrt{74}} r = 26 + 40 + 74 32
r ≈ 1.6 r \approx 1.6 r ≈ 1.6
S = π r 2 S = \pi r^2 S = π r 2
S ≈ 8 S \approx 8 S ≈ 8
Leiame kolmnurga ümbermõõdu:
P = a + b + c P = a + b + c P = a + b + c
P = 26 + 40 + 74 P = \sqrt{26} + \sqrt{40} + \sqrt{74} P = 26 + 40 + 74
P = 2 26 + 40 + 74 P = 2\sqrt{26} + \sqrt{40} + \sqrt{74} P = 2 26 + 40 + 74
P ≈ 20 P \approx 20 P ≈ 20
Leiame kõik kolmnurga nurgad:
S = 1 2 a b sin C S = \frac{1}{2}ab\sin{C} S = 2 1 ab sin C
sin α = 2 S a b \sin{\alpha} = \frac{2S}{ab} sin α = ab 2 S
α = arcsin 2 S a b \alpha = \arcsin{\frac{2S}{ab}} α = arcsin ab 2 S
α ≈ 46.8 5 ∘ \alpha \approx 46.85^\circ α ≈ 46.8 5 ∘
β ≈ 36.0 3 ∘ \beta \approx 36.03^\circ β ≈ 36.0 3 ∘
γ = 18 0 ∘ − α − β \gamma = 180^\circ - \alpha - \beta γ = 18 0 ∘ − α − β
γ ≈ 97.1 2 ∘ \gamma \approx 97.12^\circ γ ≈ 97.1 2 ∘